

Global Data Center Al Chip Packaging Market Forecast 2024-2030

Unlocking Fast-Growing Opportunities in Al Wave

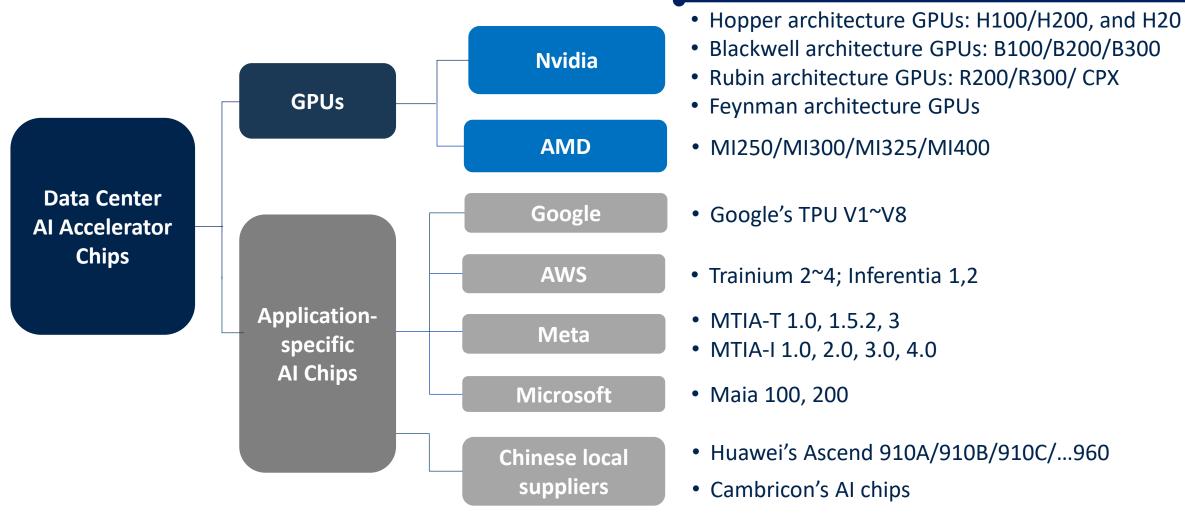
Contents

5-3

SolC

CH1	Executive Summary	
CH2	Definition & Major Assumptions	
СНЗ	Why Advanced Packaging Matters?	
CH4	Global and Taiwan's Data Center Al Chip Packaging Market Forecast	
4-1	Global Data Center Al Chip Shipment Forecast	
4-2	Global Data Center Al Chip Packaging Market Forecast	
4-3	Taiwan's Data Center AI Chip Packaging Market Forecast	
4-4	Analysis and Forecast of Major Taiwanese Players' Data Al Chip Packaging Revenue	

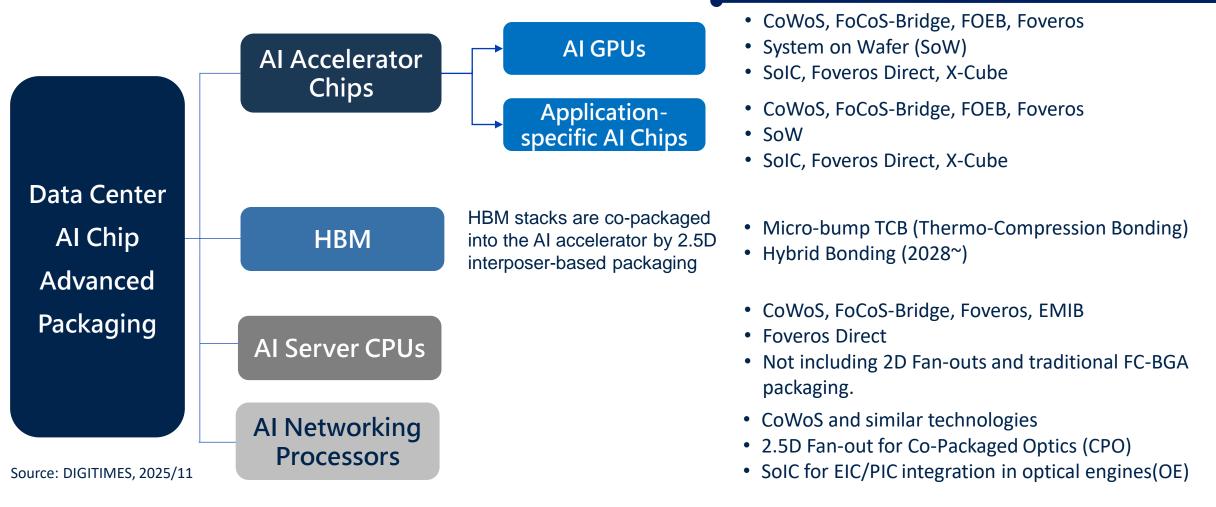
CH5	D	Ecosystem and Market Forecast of the Data Center Al Chip Packaging Industry in Taiwan	
5-	1	CoWoS	
5-	2	System on Wafer (SoW)	


CH6 Competitive Landscape in the Data Center AI Chip Packaging Market

HBM Packaging

- 6-1 Technology Transition for AI Chip
 Advanced Packaging
- 6-2 Competitive Landscape among Semiconductor Segments & Companies
- 6-3 US-China Tension and Its Impacts on the Advanced Packaging
- **CH7** Conclusion and Findings

Definition: Data Center AI Chips – AI Accelerators


Representative chips in roadmaps

Note: GPUs stand for general-purpose GPUs, and application-specific AI chips include AI ASICs and AI ASSPs.

Definition: Data Center AI Chip Advanced Packaging

Representative packaging technologies

- In the following pages, the term "custom AI chips" is equivalent to "application-specific AI chips," and "GPU" is equivalent to "GPGPU".
- All networking processors consist of Switch ICs, DPUs/SmartNICs, and custom All rack-scale-up interconnect chips for NVSwitch/UALink and similar All networking technologies within the rack.

Executive Summary (1): Data Center AI Chip Advanced Packaging Growth Strongly Outpacing the Semiconductor Market

2024–2030 Growth Comparison: Semiconductor, Packaging & Testing, and AI Chip Advanced Packaging

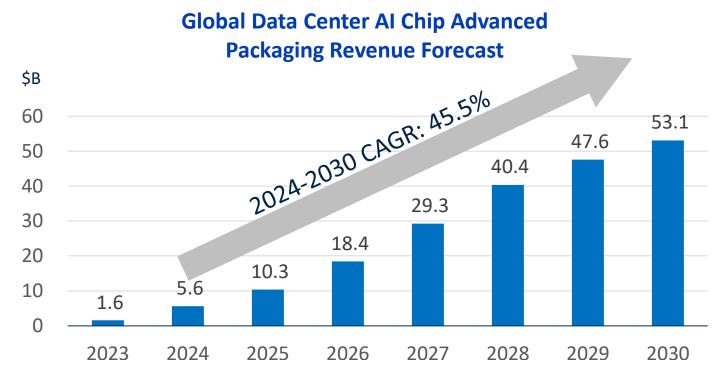
Global Semiconductor Market

8.7%

Semiconductor Packaging & Testing Market

9.5%

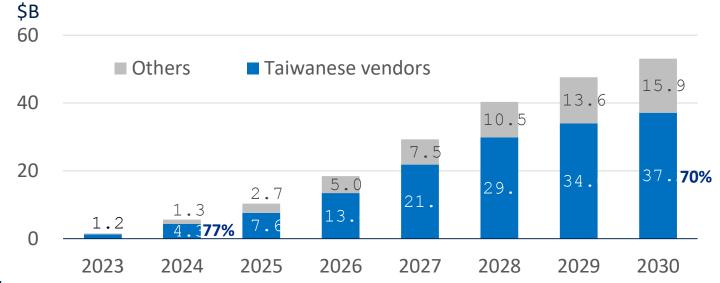
Data Center Al chip Advanced Packaging Market


45.5%

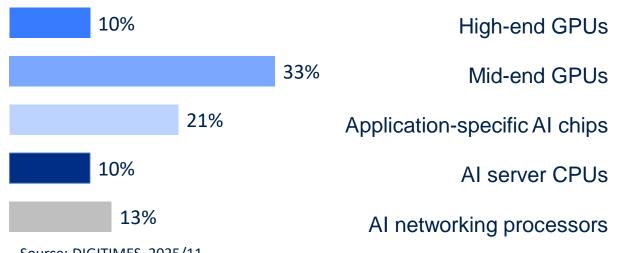
- With the generative AI surge, the global semiconductor market is set to exceed US\$1 trillion by 2030, growing at an 8.7% CAGR from 2024–2030.
- The overall packaging and testing segment is growing faster at a 9.5% CAGR over the same timeframe.
- Crucially, the datacenter AI chip advanced packaging market is poised for explosive growth, featuring an impressive 45.5% CAGR through 2030.

Executive Summary (2): Datacenter AI Advanced Packaging to Hit \$53.1B, Driven by CoWoS and other 2.5D/3D Technologies

Global data center AI chip advanced packaging revenue increases from \$5.6B in 2024 to \$53.1B in 2030, with a 45.5% CAGR.


- Data center AI chip advanced packaging includes 2.5D CoWoS, 3D SoIC, SoW, and similar packaging technologies for AI accelerators, AI server CPUs, HBM, and AI networking.
- CoWoS (Chip-on-Wafer-on-Substrate)/CoPoS (Chip-on-Panel-on-Substrate) and similar technologies are expected to account for 58% of the market by 2030.
- System on Wafer(SoW) and SoIC-like 3D stacking will gain market share from CoWoS.

Executive Summary (3): Taiwanese players will continue to hold over 70% of the data center AI chip packaging market by 2030

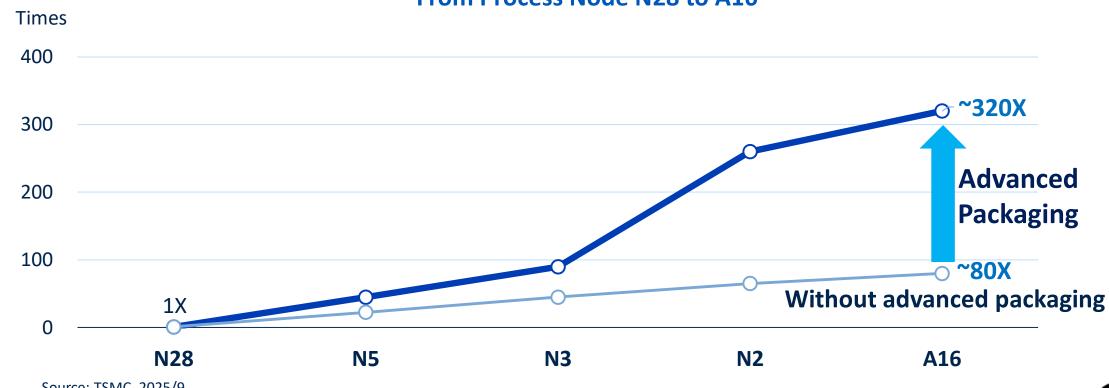

- Taiwan's share of global data-center AI chip packaging is projected to moderately decline from 77% in 2024 to 70% by 2030, indicating increasing competition from other regions.
 - Intel, Samsung, and Rapidus are all working on their own advanced packaging technologies.
 - Amkor and other companies, such as those from Singapore and Malaysia, will increase their investments in advanced packaging.
 - China's self-sufficiency policy will boost the growth of Chinese local companies in the advanced packaging sector.
- Why can Taiwanese vendors still hold a 70% market share by 2030?
 - TSMC is the leader in advanced wafer fabrication and in various 2.5D/3D packaging technologies.
 - Besides TSMC, Taiwan has a highly competitive AI rack and semiconductor supply chain that collaborates closely with leading hyperscalers and leading chip platform vendors.

Taiwanese Vendors' Data Center AI Chip Advanced Packaging Revenue Forecast

Application-specific AI Chip Shipments CAGR by 21% from 2024 to 2030, Surpassing the growth of AI GPUs and CPUs

Data Center AI Chip Shipment CAGR (2024-2030)

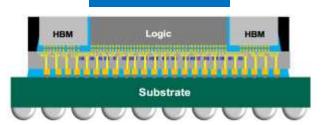
Total GPU advanced packaging revenue is projected to exceed 1.4 times that of application-specific Al chips by 2030.


Source: DIGITIMES, 2025/11

- The mid-end GPUs will grow fastest due to their low base in 2024. On the other hand, High-end GPUs have the lowest CAGR (9.9%) due to their high base in 2024 and the increase in dies per chip in the coming years. It is worth noting that high-end GPUs will remain the largest segment of the AI chip market in terms of foundry revenue by 2030, mainly due to their large chip sizes and adoption of advanced process technologies.
- The CAGR of application-specific AI chips will be higher than that of GPUs.
 - The shipment of Google TPUs will increase significantly for internal use and for external GCP customers such as Apple, OpenAI, and Anthropic.
 - The catch-up of Chinese vendors like Huawei and Cambricon to support China's self-sufficiency policy.
- Al server CPU shipments CAGR is expected to grow (10%) because the demand for GPUs and application-specific Al chips is much higher than that for CPUs.
- Al networking chips have a 13% CAGR, but only high-end switch chips require CoWoS or other 2.5D packaging to reduce the path length for large switch dies and HBM.

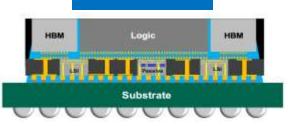
Advanced Packaging Improves Performance Significantly

- Without advanced packaging, compute performance per reticle area would increase by 80X (purely due to process-node improvements) from N28 to A16.
- Combined with advanced packaging, the compute performance of the A16 process node achieves a 320X improvement over the N28 node.



CoWoS-L Combines the Benefits of CoWoS-S and CoWoS-R, Offering High Performance and Large Interposer Availability

Comparison of CoWoS Family



CoWoS-R

CoWoS-L

Source: TSMC, 2023

	CoWoS-S	CoWoS-R	CoWoS-L
Interposer material	Silicon	Redistribution Layers (RDL)	Silicon Bridge + RDL
Interposer size	1~3.3X reticle size	1.4~5.5X	3X ~ >9X
# of HBM Stacks	8	8/12	8/12/16
Performance	good	medium	good
Cost	high	Lower than CoWoS-S	Initially highest for complexity
Applications	Al accelerators; FPGA for data center and networking	Al accelerators; Al networking ICs; (suitable for cost-concerned and large interposer applications)	AI/HPC: especially suitable for large interposers to attach more big dies and multiple HBM stacks.
Customers	Nvidia, AMD, Google	AWS	First customer: Nvidia (Blackwell)

Source: DIGITIMES, 2025/11

[■] CoWoS-L and CoWoS-R are the solutions for larger interposers, CoWoS-L can also provide near the CoWoS-S performance in finer pitch applications.

Appendix

Our Team
About DIGITIMES Research
Contact Us
Disclaimer

OUR TEAM

OUR TEAM

Co-Researcher

Tony Huang
Director

#Semiconductor & Display

About DIGITIMES Research

DIGITIMES Research Center serves over 1,200 Taiwan-listed technology companies, covering the most prominent manufacturers across the ICT sector. With this unique advantage, we are able to access first-hand industry intelligence and closely monitor global technology supply chain trends. Our mission is to lead cutting-edge technology research and provide critical supply chain insights that support strategic decision-making. Our research scope spans semiconductors, artificial intelligence, IoT, information technology, consumer electronics, communications, automotive technologies, and flat panel displays.

Supply Chain Analysis

DIGITIMES Research provides comprehensive, clear analysis of the entire supply chain - from semiconductor design to end products - enabling businesses to navigate complex challenges with precise data and strategic insights.

Expert Research Team

Our team is composed of seasoned industry experts with deep domain knowledge and years of experience. We base our research on reliable and authoritative sources, including proprietary data from close collaboration with leading companies. Our reports are developed using rigorous methodologies to ensure precision and credibility.

Research Report Coverage

DIGITIMES Research's reports cover global and Taiwanese production, industry trends, technological advancements, and strategies of leading companies, with a focus on supply chain dynamics and key components in regional and emerging markets.

Customized research and consulting services

DIGITIMES Research provides customized research and consulting services, including technology forecasting, competitor analysis, and supply chain insights, equipping businesses to make informed decisions and maintain a competitive edge in the fast-evolving tech landscape.

Contact Us

For any inquiries, feel free to contact us. We're here to help!

Service hours: Mon - Fri, 09:00-18:00 (UTC+8)

TEL: +886-2-8712-5398

Fax: +886-2-8712-3366

Email: subscription@digitimes.com

Disclaimer

This report, reflecting our assessment as of a specific date, is based on recognized sources but does not guarantee future accuracy or completeness due to rapid industry changes. Opinions may change without notice. It is intended for general reference and should not be viewed as tailored advice. Users must independently evaluate the information and accept responsibility for their decisions. Our company is not liable for any damages arising from the report, except as clearly attributable to us. While sourced from reliable data, accuracy is not guaranteed. The content is copyrighted by DIGITIMES, and reproduction is prohibited; refer to the copyright statement for details.

Copyright Notice

DIGITIMES' website and publications, including all text, photos, and videos, are protected by copyright and intellectual property laws, belonging to DIGITIMES or authorized providers. Users may download or copy content for personal, non-commercial use only, adhering to copyright laws. Redistribution or commercial use is not allowed.